Interpretable sparse SIR for functional data
نویسندگان
چکیده
This work focuses on the issue of variable selection in functional regression. Unlike most work in this framework, our approach does not select isolated points in the definition domain of the predictors, nor does it rely on the expansion of the predictors in a given functional basis. It provides an approach to select full intervals made of consecutive points. This feature improves the interpretability of the estimated coefficients and is desirable in the functional framework for which small shifts are frequent when comparing one predictor (curve) to another. Our method is described in a semiparametric framework based on Sliced Inverse Regression (SIR). SIR is an effective method for dimension reduction of high-dimensional data which computes a linear projection of the predictors in a low-dimensional space, without loss on regression information. We extend the approaches of variable selection developed for multidimensional SIR to select intervals rather than separated evaluation points in the definition domain of the functional predictors. Different and equivalent formulations of SIR are combined in a shrinkage approach with a group-Lasso-like penalty. Finally, a fully automated iterative procedure is also proposed to find the critical (interpretable) intervals. The approach is proved efficient on simulated and real data. The method is available in the R package SISIR available on CRAN at https://cran.r-project.org/ package=SISIR. keywords: functional regression SIR Lasso ridge regression interval selection
منابع مشابه
Interpretable support vector machines for functional data
Support Vector Machines (SVM) has been shown to be a powerful nonparametric classification technique even for high-dimensional data. Although predictive ability is important, obtaining an easy-to-interpret classifier is also crucial in many applications. Linear SVM provides a classifier based on a linear score. In the case of functional data, the coefficient function that defines such linear sc...
متن کاملSparse Coding for Learning Interpretable Spatio-Temporal Primitives
Sparse coding has recently become a popular approach in computer vision to learn dictionaries of natural images. In this paper we extend the sparse coding framework to learn interpretable spatio-temporal primitives. We formulated the problem as a tensor factorization problem with tensor group norm constraints over the primitives, diagonal constraints on the activations that provide interpretabi...
متن کاملSPINE: SParse Interpretable Neural Embeddings
Prediction without justification has limited utility. Much of the success of neural models can be attributed to their ability to learn rich, dense and expressive representations. While these representations capture the underlying complexity and latent trends in the data, they are far from being interpretable. We propose a novel variant of denoising k-sparse autoencoders that generates highly ef...
متن کاملPrediction and interpretation of distributed neural activity with sparse models
We explore to what extent the combination of predictive and interpretable modeling can provide new insights for functional brain imaging. For this, we apply a recently introduced regularized regression technique, the Elastic Net, to the analysis of the PBAIC 2007 competition data. Elastic Net regression controls via one parameter the number of voxels in the resulting model, and via another the ...
متن کاملInterpretable Recurrent Neural Networks Using Sequential Sparse Recovery
Recurrent neural networks (RNNs) are powerful and effective for processing sequential data. However, RNNs are usually considered “black box” models whose internal structure and learned parameters are not interpretable. In this paper, we propose an interpretable RNN based on the sequential iterative soft-thresholding algorithm (SISTA) for solving the sequential sparse recovery problem, which mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017